

Our Place in the Universe

From Earth to the Stars

Our Place in the Universe

- So just where are we in the Universe?
- What makes up the Universe?
- The distance scale
- The changing and evolving Universe
- The Big Bang
- The birth, life and death of stars
- Making the galaxies we see

The United Kingdom

$$
+2 x^{2}+
$$

The Earth

The Earth

The Milky Way
F

The Milky Way Transit Map

The Cosmic Web

The Cosmic Microwave Background

So where are we?

Our Earth Address

Cunard Line,
Southampton,
Hampshire,
United Kingdom,
Europe,
The Earth

Our Universal Address

Cunard Line,
The Earth,
The Solar System,
The Milky Way,
The Local Group,
The Universe

Cosmic Distances

Distances in Astronomy

Southampton to New York: 3,420 miles / 5,500km

Distances in Astronomy

Earth to the Moon: 238,900 miles / $384,400 \mathrm{~km}$

Distances in Astronomy

Earth to the Sun: 92,960,000 miles / |49,600,000 km

Distances in Astronomy

The edge of the Solar System: 9,000,000,000 miles / |4,484,096,000 km

Distances in Astronomy

- At the maximum speed of Queen Mary 2 (35mph)
- Southampton to New York:

4 days

- Earth to the Moon:

284 days

- Earth to the Sun:

$$
302 \text { years }
$$

- To the edge of the Solar System:

29,334 years

Distances in Astronomy

- At the speed of light
- Southampton to New York:
0.0183 seconds
- Earth to the Moon:
1.28 seconds
- Earth to the Sun:
8.3 minutes
- To the edge of the Solar System:

I 3.4 hours

Units of Distance

- I Astronomical Unit (AU)
- The average distance between the Sun and the Earth
- |49,597,87I km
- I Light Year (ly)
- The distance light would travel in I year
- 9,460,528,4 $10,000 \mathrm{~km}$

Units of Distance

- I Parsec (pc)
- Based upon the Earth's rotation around the Sun
- 30,856,775,800,000 km

Distances in Astronomy

To the centre of the Galaxy: 25,900 light years

Distances in Astronomy

To the Andromeda Galaxy: 2,538,000 light years

Distances in Astronomy

To the most distant Galaxy known: $13,000,000,000$ light years

Our Location - a Summary

- We are:

On Earth
Which is in the Solar System
Which is in the Milky Way
Which is in the Local Group
Which is in the Cosmic Web
Which is in the Universe
km/miles
50-100 AU
50 thousand ly/pc
10 million ly/pc
Billion ly/pc
13.7 Billion ly/pc

The changing and evolving Universe

The Universe Today

- The Universe isn't static - it evolves

Starting at the beginning

The Expansion of the Universe

- The objects further away are moving away fastest
- Everything appears to be moving away from Earth
- So are we in a "special" place?

The Big Bang

The Cosmic Microwave Background

The Cosmic Microwave Background

Evolution of Galaxies

Galaxy clusters

Forming Structure

- The Universe is clumpy

It's all the fault of Gravity!

How do stars work?

Stellar Nucleosynthesis

- Releases energy through a chain of reactions
- Powers all stars
- Doesn't just work with Hydrogen to Helium!

So is the Sun special?

	Minimum	Maximum	The Sun
Size	$0.4 \times$ Radius of Sun	$15 \times$ Radius of Sun	1
Mass	$0.3 \times$ Mass of Sun	$60 \times$ Mass of Sun	1
Temperature	3500 K	$25,000+\mathrm{K}$	$5,500 \mathrm{~K}$

The Spitzer Infrared Nearby Galaxies Survey (SINGS) Hubble Tuning-Fork

 The Spizer Space Telescope observed 75 galaxies as part of its Sing (Spizer Infrared Nearby Galaxies Survey) Legacy Program. Thegalaxies are presented here in a Hubble Tuning-Fork diagram, which galaxies are presented here in a Hubble Tuning-Fork diagram, which
groups galaxies according to the morphology of their nuclei and spiral arms. The designation of these galaxies and their placement in the diagram is based on their visible-light appearance. The main goal of the SINGS program is to characterize the infrared properties of a wide range of galaxy types. The images of the galaxies are composites created From data taken by IRAC (the Infrared Array Camera) at 3.6 and $8.0 \mu \mathrm{~m}$ and MIPS (the Multiband Imaging Photometer for Spizer) at $24 \mu \mathrm{~m}$. The infrared range probed by these and other observations taken for the SINGS project allows for the detailed study of each galaxy. Light from old stars appears as blue in the images, while the lumpy knots of green and red light are produced by dust clouds surrounding newly born stars. The elliptical galaxies on the left are almost entirely made of old stars, while spiral galaxies like our own Milky Way are rich

The Universe of Today

