Measuring the Heavens

The Tools and People of Astronomy Dr Jonathan Crass

The Ohio State University

Royal Astronomical Society

aia.lmsal.com

How do we answer those questions?

- We need to be able observe the Universe around us
- We need to understand what we see
- We need make testable predictions about what is going to happen

Observing the Universe

Instrument Design

ma

Instrument Design

- What exactly are we measuring?
 - What wavelength of light?
 - How bright is the object?
 - How big does it appear?
 - How fast does it change?

What can we see on the ground?

How big a telescope?

Ground-based telescopes

Why build ground-based telescopes?

- 1. They're "cheap"
- 2. They're easier to maintain
- 3. You can upgrade them
- 4. You can use different instruments for different types of science

Lovell Telescope – 76.2m

Why are radio telescopes so large?

Sensitivity

Why are radio telescopes so large?

• All telescopes are limited in resolution

Resolution =
$$1.22 \times \frac{\text{Wavelength}}{\text{Telescope Diameter}}$$

- Depends on:
 - Telescope diameter
 - Wavelength

Largest Fully Steerable

Green Bank Telescope – 100x110m

Largest Filled Aperture Five hundred meter Aperture Spherical Telescope – 500m

Event Horizon Telescope (EHT)

A Global Network of Radio Telescopes GLT Kitt Pe JCMT SMA F ALMÁ APEX Observing in 2020 SPT PLATEAU DE BURE, FRANCE

Northumberland Telescope, University of Cambridge, 11.6in

3

Hale Telescope, CA, USA – 60in

Large Binocular Telescope, AZ, USA – 2×8.4 m

O6.5	HD 12993
B0	HD 158659
B6	HD 30584
A1	HD 116608
A5	HD 9547
F0	HD 10032
F5	BD 61 0367
G0	HD 28099
G5	HD 70178
К0	HD 23524
K5	SAO 76803
МО	HD 260655
M5	Yale 1755
F4 metal poor	HD 94028
M4.5 emission	SAO 81292
B1 emission	HD 13256

The problem with ground-based telescopes

• We have an atmosphere...

Space Telescopes

The James Webb Space Telescope (JWST)

JAMES WEBB SPACE TELESCOPE

Measuring the Heavens The Tools and People of Astronomy Dr Jonathan Crass

The Ohio State University Royal Astronomical Society