

The Tools of Astronomy Seeing the whole picture Jonathan Crass

Ninth planet may have been discovered, researchers say

By Amanda Watts, CNN

Updated 12:38 PM ET, Thu January 21, 2016

3 🕣 💟 🕊

What tools do we need?

- We need to observe the Universe around us
 - The Solar System
 - Galaxies
 - And beyond
- We need to understand what we see
- We need to predict what is going to happen

The Tools of Astronomy

- The Astronomers Toolkit
 - Ground-based telescopes
 - Space telescopes
 - Spacecraft and probes

Observing the Universe

Ground-based telescopes

Ground-based telescopes

- I. They're "cheap"
- 2. They're easier to maintain
- 3. You can upgrade them
- 4. You can use different instruments for different types of science

What can we see on the ground?

Radio Telescopes

- First 'detectors' built in 1930s
- First 'dish' telescope 1937

Mk | Telescope – Jodrell Bank

Mk | Telescope – Jodrell Bank

Why are radio telescopes so large?

Sensitivity

Why are radio telescopes so large?

All telescopes are limited in resolution

Resolution = $1.22 \times \frac{\text{Wavelength}}{\text{Telescope Diameter}}$

• Depends on:

- Telescope diameter
- Wavelength

The Biggest Radio Telescopes

Largest Filled Aperture

Arecibo Radio Telescope – 305m

The Biggest Radio Telescopes

Largest Fully Steerable

Green Bank Telescope – 100x110m

Optical Telescopes

• Galileo – 1609

O6.5	HD 12993
B0	HD 158659
B6	HD 30584
A1	HD 116608
A5	HD 9547
F0	HD 10032
F5	BD 61 0367
G0	HD 28099
G5	HD 70178
К0	HD 23524
K5	SAO 76803
МО	HD 260655
M5	Yale 1755
F4 metal poor	HD 94028
M4.5 emission	SAO 81292
B1 emission	HD 13256

The problem with big telescopes

- We have an atmosphere...
- There's a finite size single telescope we can build

Atmospheric Turbulence

Correcting for the atmosphere

- The simple option:
 - Go to space!
- Correct for the effects on the ground

Space Telescopes

The beginnings of space telescopes

- First proposed by Hermann Oberth in 1923
- Lyman Spitzer, 1946
 - "Astronomical Advantages of an Extra-Terrestrial Observatory"

The First X-ray satellite - Uhuru

PIX NIXED AS HUBBLE SEES DOUBLE

Spacecraft & Probes

Solar Dynamics Observatory

 Launched: IIth February 2010 from Cape Canaveral Air Station

Getting to Mars

Landing Curiosity

"The overall scientific goal of the mission is to explore and quantitatively assess a local region on Mars' surface as a potential habitat for life, past or present."

Curiosity

- Minimum mission duration of I Martian year
 Currently on 1230 days = 1.8 Martian years
- Currently driven over 10 km

Lots more to come!
Comets

- Small solar system objects
 - Made of ice and dust
- Have elliptical shaped orbits
 - Brings them close to the sun

Pluto

Distance from the Sun 5,906,440,628km 39.482 × distance to Earth Size $0.1807 \times \text{size of Earth}$ Mass $0.002 \times \text{mass of Earth}$ Length of I Day 6.387 × Earth days Length of I Year 247.921 × Earth years

New Horizons

- Launched: 19th January 2006
- Arrival at Pluto: 14th July 2015
- Seven instruments on board
 - Three imaging telescopes
 - Two plasma spectrometers
 - A dust sensor
 - Radio science receiver/radiometer

